Normal view MARC view ISBD view

Microfluidic devices for biomedical applications / edited by Xiujun (James) Li, Yu Zhou.

Contributor(s): Li, Xiujun [editor.] | Zhou, Yu (Research scientist) [editor.].
Material type: materialTypeLabelBookSeries: Woodhead Publishing series in biomaterials: Publisher: Oxford : Woodhead Publishing, 2021Edition: Second edition.Description: 1 online resource (1 volume) : illustrations (black and white, and color).Content type: text Media type: computer Carrier type: online resourceISBN: 9780128227558; 0128227559.Subject(s): Microfluidic devices | Biomedical materials | Dispositifs microfluidiques | Biomat�eriaux | Biomedical materials | Microfluidic devicesAdditional physical formats: Print version:: Microfluidic devices for biomedical applications.DDC classification: 620.106 Online resources: ScienceDirect
Contents:
Front Cover -- Microfluidic Devices for Biomedical Applications -- Microfluidic Devices for Biomedical Applications -- Copyright -- Contents -- Contributors -- Editor Biographies -- Preface to the first edition -- Preface to the second edition -- 1 -- Materials and methods for microfabrication of microfluidic devices -- 1.1 Introduction -- 1.2 Microfabrication methods -- 1.2.1 Photolithography-based microfabrication -- 1.2.2 Replication-based methods -- 1.2.2.1 Soft lithography -- 1.2.2.2 Hot embossing -- 1.2.2.3 Injection molding -- 1.2.3 Xurography-based microfabrication -- 1.3 Materials -- 1.3.1 Glass -- 1.3.1.1 Fabrication -- 1.3.1.2 Wet chemical etching -- 1.3.1.3 Plasma etching -- 1.3.1.4 Other methods -- 1.3.1.5 Bonding -- 1.3.1.6 Applications and future trends -- 1.3.2 Silicon -- 1.3.2.1 Fabrication -- 1.3.2.2 Bulk micromachining -- 1.3.2.3 Surface micromachining -- 1.3.2.4 Applications and future trends -- 1.3.3 Polymers -- 1.3.3.1 Siloxane elastomers -- Polydimethylsiloxane -- Fabrication of microfluidic devices using PDMS -- Interconnection and bonding -- Applications and future trends -- 1.3.3.2 Thermosetting polymers -- Parylene -- Fabrication of microfluidic devices using parylene -- Interconnection and bonding -- Applications and future trends -- Polyimide -- Polyurethane -- 1.3.3.3 Thermoplastic polymers -- PMMA -- Fabrication of microfluidic devices using PMMA -- PMMA interconnection and bonding -- Polycarbonate -- COC/COP -- 1.3.4 Paper -- 1.3.5 Thread -- 1.3.5.1 Patterning threads -- 1.3.5.2 Applications -- 1.3.6 Pressure sensitive adhesives -- 1.4 Conclusion and future trends -- 1.5 Acronyms -- References -- 2 -- Surface coatings for microfluidic biomedical devices -- 2.1 Introduction -- 2.2 Covalent immobilization strategies: polymer devices -- 2.2.1 Polydimethylsiloxane devices -- 2.2.1.1 Silanization strategies.
2.2.1.2 Other immobilization schemes on PDMS -- 2.2.2 Thermoplastic devices -- 2.2.2.1 Polymethyl methacrylate -- 2.2.2.2 Cyclic olefin polymers and copolymers -- 2.2.3 Other polymer devices -- 2.2.3.1 Polycarbonate -- 2.2.3.2 Polystyrene -- 2.3 Covalent immobilization strategies: glass devices -- 2.3.1 Silanization -- 2.3.2 Other strategies -- 2.4 Adsorption strategies -- 2.4.1 Proteins -- 2.4.2 Adsorptive polymer coatings -- 2.4.3 Polyelectrolyte multilayers -- 2.4.4 Surfactants -- 2.5 Other strategies utilizing surface treatments -- 2.6 Examples of applications -- 2.6.1 Lab-on-a-chip drug analysis of blood serum -- 2.6.2 Single cell transcriptome analysis with microfluidic PCR -- 2.6.3 Immunosensor to detect pathogenic bacteria -- 2.7 Conclusions and future trends -- 2.8 Sources of further information and advice -- References -- 3 -- Actuation mechanisms for microfluidic biomedical devices -- 3.1 Introduction -- 3.2 Electrokinetics -- 3.2.1 The electric double layer -- 3.2.2 Electroosmosis -- 3.2.2.1 Electroosmotic slip -- 3.2.2.2 Electroosmotic pumping -- 3.2.2.3 Electroosmotic mixing -- 3.2.3 Electrophoresis -- 3.2.4 AC electrokinetics -- 3.2.5 Dielectrophoresis -- 3.3 Acoustics -- 3.3.1 Basic principles of acoustic fluid and particle manipulation -- 3.3.2 Bulk ultrasonic vibration -- 3.3.3 Surface acoustic waves -- 3.3.3.1 SAW particle manipulation -- 3.3.3.2 SAW fluid actuation and manipulation -- 3.4 Limitations and future trends -- References -- 4 -- Droplet microfluidics for biomedical devices -- 4.1 Introduction-droplets in the wider context of microfluidics -- 4.2 Fundamental principles of droplet microfluidics -- 4.2.1 Droplet flow in microchannels -- 4.2.1.1 Dimensionless numbers -- 4.2.1.2 Flow patterns -- 4.2.1.3 Independent variables for experiments -- 4.2.1.4 Interfacial tension and surfactants -- 4.2.1.5 Surface wetting conditions.
4.2.2 Comparison and contrast of single-phase and droplet microfluidics -- 4.2.2.1 General advantages of microfluidic flow -- 4.2.2.2 Disadvantages of single-phase microfluidics -- 4.2.2.3 Advantages of droplet microfluidics -- 4.2.2.4 Disadvantages of droplet microfluidics -- 4.3 Droplet microfluidic approaches -- 4.3.1 Passive microfluidics -- 4.3.1.1 Generation -- 4.3.1.2 Splitting -- 4.3.1.3 Merging -- 4.3.1.4 Mixing -- 4.3.1.5 Incubation -- 4.3.1.6 Sorting -- 4.3.2 Active microfluidics -- 4.3.2.1 Control of multiple droplets -- 4.3.2.2 Control of individual droplets -- 4.4 Biomedical applications -- 4.4.1 Biomaterials -- 4.4.1.1 Materials -- 4.4.1.2 Drug delivery -- 4.4.1.3 Stem cells and tissue engineering -- 4.4.1.4 General perspective on droplet microfluidics and biomaterials -- 4.4.2 Isolated element screening -- 4.4.2.1 Single-cell encapsulation -- 4.4.2.2 On-chip analysis tools -- 4.4.2.3 General perspective on droplet microfluidics and isolated element analysis -- 4.4.3 Bioreactors -- 4.4.3.1 Drug screening -- 4.4.3.2 Artificial cells -- 4.4.3.3 General perspective on droplet microfluidics and bioreactors -- 4.5 Conclusion-perspective on the future of biomedical applications using droplet microfluidics -- References -- 5 -- Controlled drug delivery using microdevices -- 5.1 Introduction -- 5.2 Microreservoir-based drug delivery systems -- 5.2.1 Working principle -- 5.2.2 Microreservoir fabrication -- 5.2.3 Applications -- 5.2.3.1 Silicon-based devices -- 5.2.3.2 Polymer-based device -- 5.3 Micro/nanofluidics-based drug delivery systems -- 5.3.1 Working principle -- 5.3.2 Fabrication of micro/nanofluidic drug delivery systems -- 5.3.3 Applications -- 5.4 Future trends and challenges -- References -- 6 -- Microneedles for drug delivery and monitoring -- 6.1 Introduction -- 6.2 Microneedle design parameters and structure.
6.2.1 Microneedle geometry -- 6.2.2 Microneedle materials -- 6.3 Drug delivery strategies using microneedle arrays -- 6.3.1 Solid microneedle arrays -- 6.3.2 Coated microneedle arrays -- 6.3.3 Dissolving microneedle arrays -- 6.3.4 Hollow microneedle arrays -- 6.3.5 Hydrogel-forming microneedle arrays -- 6.4 Other microneedle array applications -- 6.4.1 Microneedle-mediated vaccine delivery -- 6.4.2 Microneedle-mediated skin appearance improvement and delivery of cosmeceuticals -- 6.5 Microneedle-mediated patient monitoring and diagnosis -- 6.5.1 Fluid flow -- 6.5.2 Differential strategies for fluid extraction -- 6.5.3 Integrated designs -- 6.6 Clinical translation and commercialisation of microneedle products -- 6.7 Conclusion -- References -- 7 -- Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications -- 7.1 Introduction -- 7.2 Microfluidics for drug discovery -- 7.2.1 Identification of druggable targets -- 7.2.2 Hit identification and lead optimization -- 7.2.2.1 Synthesis of drug libraries -- 7.2.2.2 High throughput screening -- 7.2.3 Preclinical evaluation -- 7.2.3.1 In vitro evaluation -- 7.2.3.2 Ex vivo evaluation -- 7.2.3.3 In vivo evaluation -- 7.3 Microfluidics for pharmaceutical analysis and diagnostic applications -- 7.3.1 Microfluidics for pharmaceutical analysis -- 7.3.2 Microfluidics for diagnostic purposes -- 7.4 Examples of commercial microfluidic devices -- 7.5 Future trends -- References -- 8 -- Microfluidic devices for cell manipulation -- 8.1 Introduction -- 8.1.1 Key issues -- 8.2 Microenvironment on cell integrity -- 8.2.1 Cell structure and function -- 8.2.2 External stresses on cells -- 8.3 Microscale fluid dynamics -- 8.3.1 Dimensionless numbers -- 8.3.2 Properties of biofluids -- 8.3.3 Flow dynamics in microchannels -- 8.3.4 System design and operation.
8.3.4.1 Complex microfluidic networks -- 8.3.4.2 Bubble extraction -- 8.4 Manipulation technologies -- 8.4.1 Field flow fractionation -- 8.4.2 Hydrodynamic mechanisms -- 8.4.2.1 Deterministic physical interactions -- 8.4.2.2 Inertial migration -- 8.4.2.3 Curved channels -- 8.4.2.4 Hydrodynamic filtering and microfluidic networks -- 8.4.2.5 Biomimetics -- 8.4.2.6 Hydrophoresis and microstructure inclusions -- 8.4.2.7 Hydrodynamic devices -- 8.4.3 Electrokinetic mechanisms -- 8.4.3.1 Dielectrophoresis -- 8.4.3.2 AC electroosmosis -- 8.4.3.3 Electrokinetic devices -- 8.4.4 Acoustic mechanisms -- 8.4.4.1 Acoustic radiation force -- 8.4.4.2 Acoustophoretic devices -- 8.4.5 Optical mechanisms -- 8.4.5.1 Optical devices -- 8.4.6 Magnetic mechanisms -- 8.4.6.1 Magnetic force -- 8.4.6.2 Magnetophoretic devices -- 8.5 Manipulation of cancer cells in microfluidic systems -- 8.5.1 Deformability and migration studies -- 8.5.2 Microfluidic separation and sorting -- 8.5.3 Current challenges in sorting and detection -- 8.6 Conclusion and future trends -- 8.7 Sources of further information and advice -- References -- 9 -- Microfluidic devices for immobilization and micromanipulation of single cells and small organisms -- 9.1 Introduction -- 9.2 Glass microfluidic device for rapid single cell immobilization and microinjection -- 9.3 Microfluidic device for automated, high-speed microinjection of C. elegans -- 9.4 Microfabricated device for immobilization and mechanical stimulation of Drosophila larvae -- 9.5 Conclusions and outlook -- References -- 10 -- Microfluidic devices for developing tissue scaffolds -- 10.1 Introduction -- 10.2 Key issues and technical challenges for successful tissue engineering -- 10.2.1 Clinically relevant cell numbers: from stem cells through to mature, fully differentiated cells -- 10.2.2 Effective cell seeding and scaffold colonization.
    average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Front Cover -- Microfluidic Devices for Biomedical Applications -- Microfluidic Devices for Biomedical Applications -- Copyright -- Contents -- Contributors -- Editor Biographies -- Preface to the first edition -- Preface to the second edition -- 1 -- Materials and methods for microfabrication of microfluidic devices -- 1.1 Introduction -- 1.2 Microfabrication methods -- 1.2.1 Photolithography-based microfabrication -- 1.2.2 Replication-based methods -- 1.2.2.1 Soft lithography -- 1.2.2.2 Hot embossing -- 1.2.2.3 Injection molding -- 1.2.3 Xurography-based microfabrication -- 1.3 Materials -- 1.3.1 Glass -- 1.3.1.1 Fabrication -- 1.3.1.2 Wet chemical etching -- 1.3.1.3 Plasma etching -- 1.3.1.4 Other methods -- 1.3.1.5 Bonding -- 1.3.1.6 Applications and future trends -- 1.3.2 Silicon -- 1.3.2.1 Fabrication -- 1.3.2.2 Bulk micromachining -- 1.3.2.3 Surface micromachining -- 1.3.2.4 Applications and future trends -- 1.3.3 Polymers -- 1.3.3.1 Siloxane elastomers -- Polydimethylsiloxane -- Fabrication of microfluidic devices using PDMS -- Interconnection and bonding -- Applications and future trends -- 1.3.3.2 Thermosetting polymers -- Parylene -- Fabrication of microfluidic devices using parylene -- Interconnection and bonding -- Applications and future trends -- Polyimide -- Polyurethane -- 1.3.3.3 Thermoplastic polymers -- PMMA -- Fabrication of microfluidic devices using PMMA -- PMMA interconnection and bonding -- Polycarbonate -- COC/COP -- 1.3.4 Paper -- 1.3.5 Thread -- 1.3.5.1 Patterning threads -- 1.3.5.2 Applications -- 1.3.6 Pressure sensitive adhesives -- 1.4 Conclusion and future trends -- 1.5 Acronyms -- References -- 2 -- Surface coatings for microfluidic biomedical devices -- 2.1 Introduction -- 2.2 Covalent immobilization strategies: polymer devices -- 2.2.1 Polydimethylsiloxane devices -- 2.2.1.1 Silanization strategies.

2.2.1.2 Other immobilization schemes on PDMS -- 2.2.2 Thermoplastic devices -- 2.2.2.1 Polymethyl methacrylate -- 2.2.2.2 Cyclic olefin polymers and copolymers -- 2.2.3 Other polymer devices -- 2.2.3.1 Polycarbonate -- 2.2.3.2 Polystyrene -- 2.3 Covalent immobilization strategies: glass devices -- 2.3.1 Silanization -- 2.3.2 Other strategies -- 2.4 Adsorption strategies -- 2.4.1 Proteins -- 2.4.2 Adsorptive polymer coatings -- 2.4.3 Polyelectrolyte multilayers -- 2.4.4 Surfactants -- 2.5 Other strategies utilizing surface treatments -- 2.6 Examples of applications -- 2.6.1 Lab-on-a-chip drug analysis of blood serum -- 2.6.2 Single cell transcriptome analysis with microfluidic PCR -- 2.6.3 Immunosensor to detect pathogenic bacteria -- 2.7 Conclusions and future trends -- 2.8 Sources of further information and advice -- References -- 3 -- Actuation mechanisms for microfluidic biomedical devices -- 3.1 Introduction -- 3.2 Electrokinetics -- 3.2.1 The electric double layer -- 3.2.2 Electroosmosis -- 3.2.2.1 Electroosmotic slip -- 3.2.2.2 Electroosmotic pumping -- 3.2.2.3 Electroosmotic mixing -- 3.2.3 Electrophoresis -- 3.2.4 AC electrokinetics -- 3.2.5 Dielectrophoresis -- 3.3 Acoustics -- 3.3.1 Basic principles of acoustic fluid and particle manipulation -- 3.3.2 Bulk ultrasonic vibration -- 3.3.3 Surface acoustic waves -- 3.3.3.1 SAW particle manipulation -- 3.3.3.2 SAW fluid actuation and manipulation -- 3.4 Limitations and future trends -- References -- 4 -- Droplet microfluidics for biomedical devices -- 4.1 Introduction-droplets in the wider context of microfluidics -- 4.2 Fundamental principles of droplet microfluidics -- 4.2.1 Droplet flow in microchannels -- 4.2.1.1 Dimensionless numbers -- 4.2.1.2 Flow patterns -- 4.2.1.3 Independent variables for experiments -- 4.2.1.4 Interfacial tension and surfactants -- 4.2.1.5 Surface wetting conditions.

4.2.2 Comparison and contrast of single-phase and droplet microfluidics -- 4.2.2.1 General advantages of microfluidic flow -- 4.2.2.2 Disadvantages of single-phase microfluidics -- 4.2.2.3 Advantages of droplet microfluidics -- 4.2.2.4 Disadvantages of droplet microfluidics -- 4.3 Droplet microfluidic approaches -- 4.3.1 Passive microfluidics -- 4.3.1.1 Generation -- 4.3.1.2 Splitting -- 4.3.1.3 Merging -- 4.3.1.4 Mixing -- 4.3.1.5 Incubation -- 4.3.1.6 Sorting -- 4.3.2 Active microfluidics -- 4.3.2.1 Control of multiple droplets -- 4.3.2.2 Control of individual droplets -- 4.4 Biomedical applications -- 4.4.1 Biomaterials -- 4.4.1.1 Materials -- 4.4.1.2 Drug delivery -- 4.4.1.3 Stem cells and tissue engineering -- 4.4.1.4 General perspective on droplet microfluidics and biomaterials -- 4.4.2 Isolated element screening -- 4.4.2.1 Single-cell encapsulation -- 4.4.2.2 On-chip analysis tools -- 4.4.2.3 General perspective on droplet microfluidics and isolated element analysis -- 4.4.3 Bioreactors -- 4.4.3.1 Drug screening -- 4.4.3.2 Artificial cells -- 4.4.3.3 General perspective on droplet microfluidics and bioreactors -- 4.5 Conclusion-perspective on the future of biomedical applications using droplet microfluidics -- References -- 5 -- Controlled drug delivery using microdevices -- 5.1 Introduction -- 5.2 Microreservoir-based drug delivery systems -- 5.2.1 Working principle -- 5.2.2 Microreservoir fabrication -- 5.2.3 Applications -- 5.2.3.1 Silicon-based devices -- 5.2.3.2 Polymer-based device -- 5.3 Micro/nanofluidics-based drug delivery systems -- 5.3.1 Working principle -- 5.3.2 Fabrication of micro/nanofluidic drug delivery systems -- 5.3.3 Applications -- 5.4 Future trends and challenges -- References -- 6 -- Microneedles for drug delivery and monitoring -- 6.1 Introduction -- 6.2 Microneedle design parameters and structure.

6.2.1 Microneedle geometry -- 6.2.2 Microneedle materials -- 6.3 Drug delivery strategies using microneedle arrays -- 6.3.1 Solid microneedle arrays -- 6.3.2 Coated microneedle arrays -- 6.3.3 Dissolving microneedle arrays -- 6.3.4 Hollow microneedle arrays -- 6.3.5 Hydrogel-forming microneedle arrays -- 6.4 Other microneedle array applications -- 6.4.1 Microneedle-mediated vaccine delivery -- 6.4.2 Microneedle-mediated skin appearance improvement and delivery of cosmeceuticals -- 6.5 Microneedle-mediated patient monitoring and diagnosis -- 6.5.1 Fluid flow -- 6.5.2 Differential strategies for fluid extraction -- 6.5.3 Integrated designs -- 6.6 Clinical translation and commercialisation of microneedle products -- 6.7 Conclusion -- References -- 7 -- Microfluidic systems for drug discovery, pharmaceutical analysis, and diagnostic applications -- 7.1 Introduction -- 7.2 Microfluidics for drug discovery -- 7.2.1 Identification of druggable targets -- 7.2.2 Hit identification and lead optimization -- 7.2.2.1 Synthesis of drug libraries -- 7.2.2.2 High throughput screening -- 7.2.3 Preclinical evaluation -- 7.2.3.1 In vitro evaluation -- 7.2.3.2 Ex vivo evaluation -- 7.2.3.3 In vivo evaluation -- 7.3 Microfluidics for pharmaceutical analysis and diagnostic applications -- 7.3.1 Microfluidics for pharmaceutical analysis -- 7.3.2 Microfluidics for diagnostic purposes -- 7.4 Examples of commercial microfluidic devices -- 7.5 Future trends -- References -- 8 -- Microfluidic devices for cell manipulation -- 8.1 Introduction -- 8.1.1 Key issues -- 8.2 Microenvironment on cell integrity -- 8.2.1 Cell structure and function -- 8.2.2 External stresses on cells -- 8.3 Microscale fluid dynamics -- 8.3.1 Dimensionless numbers -- 8.3.2 Properties of biofluids -- 8.3.3 Flow dynamics in microchannels -- 8.3.4 System design and operation.

8.3.4.1 Complex microfluidic networks -- 8.3.4.2 Bubble extraction -- 8.4 Manipulation technologies -- 8.4.1 Field flow fractionation -- 8.4.2 Hydrodynamic mechanisms -- 8.4.2.1 Deterministic physical interactions -- 8.4.2.2 Inertial migration -- 8.4.2.3 Curved channels -- 8.4.2.4 Hydrodynamic filtering and microfluidic networks -- 8.4.2.5 Biomimetics -- 8.4.2.6 Hydrophoresis and microstructure inclusions -- 8.4.2.7 Hydrodynamic devices -- 8.4.3 Electrokinetic mechanisms -- 8.4.3.1 Dielectrophoresis -- 8.4.3.2 AC electroosmosis -- 8.4.3.3 Electrokinetic devices -- 8.4.4 Acoustic mechanisms -- 8.4.4.1 Acoustic radiation force -- 8.4.4.2 Acoustophoretic devices -- 8.4.5 Optical mechanisms -- 8.4.5.1 Optical devices -- 8.4.6 Magnetic mechanisms -- 8.4.6.1 Magnetic force -- 8.4.6.2 Magnetophoretic devices -- 8.5 Manipulation of cancer cells in microfluidic systems -- 8.5.1 Deformability and migration studies -- 8.5.2 Microfluidic separation and sorting -- 8.5.3 Current challenges in sorting and detection -- 8.6 Conclusion and future trends -- 8.7 Sources of further information and advice -- References -- 9 -- Microfluidic devices for immobilization and micromanipulation of single cells and small organisms -- 9.1 Introduction -- 9.2 Glass microfluidic device for rapid single cell immobilization and microinjection -- 9.3 Microfluidic device for automated, high-speed microinjection of C. elegans -- 9.4 Microfabricated device for immobilization and mechanical stimulation of Drosophila larvae -- 9.5 Conclusions and outlook -- References -- 10 -- Microfluidic devices for developing tissue scaffolds -- 10.1 Introduction -- 10.2 Key issues and technical challenges for successful tissue engineering -- 10.2.1 Clinically relevant cell numbers: from stem cells through to mature, fully differentiated cells -- 10.2.2 Effective cell seeding and scaffold colonization.

There are no comments for this item.

Log in to your account to post a comment.