Enabling 5G communication systems to support vertical industries / (Record no. 74610)

000 -LEADER
fixed length control field 13947nam a2200613 i 4500
001 - CONTROL NUMBER
control field 8786834
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220712210017.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 190809s2019 mau ob 001 eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9781119515579
-- electronic bk.
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic bk.
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic bk.
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- print
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
-- electronic bk.
082 04 - CLASSIFICATION NUMBER
Call Number 621.3845/6
245 00 - TITLE STATEMENT
Title Enabling 5G communication systems to support vertical industries /
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 PDF (288 pages).
505 0# - FORMATTED CONTENTS NOTE
Remark 2 About the Editors xi -- List of Contributors xiii -- Preface xvii -- 1 Enabling the Verticals of 5G: Network Architecture, Design and Service Optimization 1 /Andy Sutton -- 1.1 Introduction 1 -- 1.2 Use Cases 3 -- 1.3 5G Network Architecture 4 -- 1.4 RAN Functional Decomposition 7 -- 1.5 Designing a 5G Network 9 -- 1.6 Network Latency 11 -- 1.7 5G Network Architecture Design 13 -- 1.8 Summary 20 -- Acknowledgements 21 -- References 21 -- 2 Industrial Wireless Sensor Networks and 5G Connected Industries 23 /Mohsin Raza, Sajjad Hussain, Nauman Aslam, Hoa Le-Minh and Huan X. Nguyen -- 2.1 Overview 23 -- 2.2 Industrial Wireless Sensor Networks 24 -- 2.2.1 Wired and Wireless Networks in Industrial Environment 24 -- 2.2.2 Transformation of WSNs for Industrial Applications 24 -- 2.2.3 IWSN Architecture 25 -- 2.3 Industrial Traffic Types and its Critical Nature 28 -- 2.3.1 Safety/Emergency Traffic 28 -- 2.3.2 Critical Control Traffic 28 -- 2.3.3 Low-Risk Control Traffic 28 -- 2.3.4 Periodic Monitoring Traffic 28 -- 2.3.5 Critical Nature and Time Deadlines 29 -- 2.4 Existing Works and Standards 30 -- 2.4.1 Wireless Technologies 30 -- 2.4.2 Industry-Related IEEE Standards 31 -- 2.4.2.1 IEEE 802.15.4 31 -- 2.4.2.2 IEEE 802.15.4e 32 -- 2.5 Ultra-Reliable Low-Latency Communications (URLLC) in IWSNS 33 -- 2.6 Summary 37 -- References 37 -- 3 Haptic Networking Supporting Vertical Industries 41 /Luis Sequeira, Konstantinos Antona koglou, Maliheh Mahlouji and Toktam Mahmoodi -- 3.1 Tactile Internet Use Cases and Requirements 41 -- 3.1.1 Quality of Service 42 -- 3.1.2 Use Cases and Requirements 43 -- 3.2 Teleoperation Systems 45 -- 3.2.1 Classification of Teleoperation Systems 45 -- 3.2.2 Haptic Control and Data Reduction 46 -- 3.2.2.1 Performance of Teleoperation Control Schemes 48 -- 3.2.2.2 Haptic Data Reduction 59 -- 3.2.2.3 Kinesthetic Data Reduction 59 -- 3.2.2.4 Tactile Data Reduction 62 -- 3.2.3 Combining Control Schemes and Data Reduction 63 -- Acknowledgment 64 -- References 64.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 4 5G-Enhanced Smart Grid Services 75 /Muhammad Ismail, Islam Safak Bayram, Khalid Qaraqe and Erchin Serpedin -- 4.1 Introduction 75 -- 4.2 Smart Grid Services and Communication Requirements 78 -- 4.2.1 Smart Grid Fundamentals 78 -- 4.2.1.1 Data Collection and Management Services 78 -- 4.2.1.2 Control and Operation Services 81 -- 4.2.2 Communication Requirements for Smart Grid Services 87 -- 4.3 Smart Grid Services Supported by 5G Networks 90 -- 4.3.1 Data Collection and Management Services 90 -- 4.3.1.1 Data Collection Services 91 -- 4.3.1.2 Data Management Services 95 -- 4.3.2 Operation Decision-Making Services 96 -- 4.3.2.1 Demand Side Management Services 96 -- 4.3.2.2 Electric Vehicle Charging and Discharging Services 98 -- 4.4 Summary and Future Research 99 -- Acknowledgment 100 -- References 100 -- 5 Evolution of Vehicular Communications within the Context of 5G Systems 103 /Kostas Katsaros and Mehrdad Dianati -- 5.1 Introduction 103 -- 5.2 Vehicular Connectivity 104 -- 5.2.1 Cellular V2X 105 -- 5.2.1.1 Release 14 - First C-V2X Services 105 -- 5.2.1.2 Release 15 - First Taste of 5G 108 -- 5.2.1.3 Release 16 - Fully-Fledged 5G 108 -- 5.2.2 Dedicated Short Range Communication (DSRC) 110 -- 5.2.2.1 Co-Existence 110 -- 5.2.3 Advanced Technologies 111 -- 5.2.3.1 Multi-Access Edge Computing 111 -- 5.2.3.2 Network Slicing 113 -- 5.3 Data Dissemination 114 -- 5.3.1 Context-Aware Middleware 114 -- 5.3.2 Heterogeneity and Interoperability 116 -- 5.3.3 Higher Layer Communication Protocols 118 -- 5.4 Towards Connected Autonomous Driving 121 -- 5.4.1 Phase 1 - Awareness Driving Applications 122 -- 5.4.2 Phase 2 - Collective Perception 122 -- 5.4.3 Phase 3/4 - Trajectory/Manoeuvre Sharing 123 -- 5.4.4 Phase 5 - Full Autonomy 123 -- 5.5 Conclusions 123 -- References 124 -- 6 State-of-the-Art of Sparse Code Multiple Access for Connected Autonomous Vehicle Application 127 /Yi Lu, Chong Han, Carsten Maple, Mehrdad Dianati and Alex Mouzakitis -- 6.1 Introduction 127 -- 6.2 Sparse Code Multiple Access 130.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 6.3 State-of-the-Art 134 -- 6.3.1 Codebook Design 134 -- 6.3.2 Decoding/Detecting Techniques for SCMA 137 -- 6.3.3 Other Research on Performance Evaluation of SCMA 138 -- 6.4 Conclusion and Future Work 140 -- References 145 -- 7 5G Communication Systems and Connected Healthcare 149 /David Soldani and Matteo Innocenti -- 7.1 Introduction 149 -- 7.2 Use Cases and Technical Requirements 151 -- 7.2.1 Wireless Tele Surgery 151 -- 7.2.2 Wireless Service Robots 151 -- 7.3 5G communication System 154 -- 7.3.1 3GPP Technology Roadmap 154 -- 7.3.2 5G Spectrum 155 -- 7.3.3 5G Reference Architecture 155 -- 7.3.4 5G Security Aspects 161 -- 7.3.5 5G Enabling Technologies 161 -- 7.3.5.1 5G design for Low-Latency Transmission 162 -- 7.3.5.2 5G design for Higher-Reliability Transmission 166 -- 7.3.6 5G Deployment Scenarios 168 -- 7.4 Value Chain, Business Model and Business Case Calculation 170 -- 7.4.1 Market Uptake for Robotic Platforms 171 -- 7.4.2 Business Model and Value Chain 171 -- 7.4.3 Business case for Service Providers 171 -- 7.4.3.1 Assumptions 172 -- 7.4.3.2 Business Cases Calculation 172 -- 7.5 Conclusions 174 -- References 175 -- 8 5G: Disruption in Media and Entertainment 179 /Stamos Katsigiannis, Wasim Ahmad and Naeem Ramzan -- 8.1 Multi-Channel Wireless Audio Systems for Live Production 179 -- 8.2 Video 181 -- 8.2.1 Video Compression Algorithms 181 -- 8.2.1.1 HEVC: High Efficiency Video Coding 181 -- 8.2.1.2 VP9 182 -- 8.2.1.3 AV1: AO Media Video 1 183 -- 8.2.2 Streaming Protocols 183 -- 8.2.2.1 Apple HTTP Live Streaming (HLS) 183 -- 8.2.2.2 Dynamic Adaptive Streaming over HTTP (DASH) 184 -- 8.2.3 Video Streaming Over Mobile Networks 184 -- 8.3 Immersive Media 185 -- 8.3.1 Virtual Reality (VR) 186 -- 8.3.2 Augmented Reality (AR) 186 -- 8.3.3 360-Degree Video 187 -- 8.3.4 Immersive Media Streaming 188 -- References 189 -- 9 Towards Realistic Modelling of Drone-based Cellular Network Coverage 191 /Haneya Naeem Qureshi and Ali Imran -- 9.1 Overview of Existing Models for Drone-Based Cellular Network Coverage 192.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 9.2 Key Objectives and Organization of this Chapter 193 -- 9.3 Motivation 194 -- 9.4 System Model 194 -- 9.5 UAV Coverage Model Development 196 -- 9.5.1 Coverage Probability 196 -- 9.5.2 Received Signal Strength 198 -- 9.6 Trade-Offs between Coverage Radius, Beamwidth and Height 199 -- 9.6.1 Coverage Radius Versus Beamwidth 199 -- 9.6.2 Coverage Radius Versus Height 200 -- 9.6.3 Height Versus Beamwidth 201 -- 9.7 Impact of Altitude, Beamwidth and Radius on RSS 201 -- 9.8 Analysis for Different Frequencies and Environments 203 -- 9.9 Comparison of Altitude and Beamwidth to Control Coverage 204 -- 9.10 Coverage Probability with Varying Tilt Angles and Asymmetric Beamwidths 206 -- 9.11 Coverage Analysis with Multiple UAVs 207 -- 9.12 Conclusion 211 -- Acknowledgment 211 -- References 211 -- Appendix A 213 -- 10 Intelligent Positioning of UAVs for Future Cellular Networks 217 /João Pedro Battistella Nadas, Paulo Valente Klaine, Rafaela de Paula Parisotto and Richard D. Souza -- 10.1 Introduction 217 -- 10.2 Applications of UAVs in Cellular Networks 218 -- 10.2.1 Coverage in Rural Areas 218 -- 10.2.2 Communication for Internet of Things 218 -- 10.2.3 Flying Fronthaul /Backhaul 219 -- 10.2.4 Aerial Edge Caching 219 -- 10.2.5 Pop-Up Networks 219 -- 10.2.6 Emergency Communication Networks 220 -- 10.3 Strategies for Positioning UAVs in Cellular Network 221 -- 10.4 Reinforcement Learning 222 -- 10.4.1 Q-Learning 222 -- 10.5 Simulations 223 -- 10.5.1 Urban Model 223 -- 10.5.2 The UAVs 224 -- 10.5.3 Path loss 225 -- 10.5.4 Simulation Scenario 225 -- 10.5.5 Proposed RL Implementation 226 -- 10.5.5.1 Simulation Results 228 -- 10.6 Conclusion 229 -- References 230 -- 11 Integrating Public Safety Networks to 5G: Applications and Standards 233 /Usman Raza, Muhammad Usman, Muhammad Rizwan Asghar, Imran Shafique Ansari and Fabrizio Granelli -- 11.1 Introduction 233 -- 11.2 Public Safety Scenarios 235 -- 11.2.1 In-Coverage Scenario 235 -- 11.2.2 Out-of-Coverage Scenario 236 -- 11.2.3 Partial-Coverage Scenario 236.
505 8# - FORMATTED CONTENTS NOTE
Remark 2 11.3 Standardization Efforts 236 -- 11.3.1 3rd Generation Partnership Project 237 -- 11.3.1.1 Release 8 237 -- 11.3.1.2 Release 9 237 -- 11.3.1.3 Release 10 238 -- 11.3.1.4 Release 11 238 -- 11.3.1.5 Release 12 238 -- 11.3.1.6 Release 13 240 -- 11.3.1.7 Release 14 241 -- 11.3.1.8 Release 15 241 -- 11.3.2 Open Mobile Alliance 242 -- 11.3.2.1 PTT over Cellular 242 -- 11.3.2.2 Push to Communicate for Public Safety (PCPS) 242 -- 11.3.3 Alliance for Telecommunication Industry Solutions 242 -- 11.3.3.1 Energy and Utility Sector 243 -- 11.3.3.2 Building Alarm Systems 243 -- 11.3.3.3 PS Communications with Emergency Centers 243 -- 11.3.3.4 Smart City Solutions 243 -- 11.3.4 APCO Global Alliance 244 -- 11.3.5 Groupe Speciale Mobile Association (GSMA) 244 -- 11.4 Future Challenges and Enabling Technologies 245 -- 11.4.1 Future challenges 246 -- 11.4.1.1 Connectivity 246 -- 11.4.1.2 Interoperability 246 -- 11.4.1.3 Resource Scarceness 247 -- 11.4.1.4 Security 247 -- 11.4.1.5 Big Data 247 -- 11.4.2 Enabling Technologies 248 -- 11.4.2.1 Software-Defined Networking 248 -- 11.4.2.2 Cognitive Radio Networks 248 -- 11.4.2.3 Non-orthogonal Multiple Access 248 -- 11.5 Conclusion 248 -- References 249 -- 12 Future Perspectives 253 /Muhammad Ali Imran, Yusuf Abdulrahman Sambo and Qammer H. Abbasi -- 12.1 Enabling Rural Connectivity 253 -- 12.2 Key Technologies for the Design of beyond 5G Networks 254 -- 12.2.1 Blockchain 254 -- 12.2.2 Terahertz Communication 255 -- 12.2.3 LiFi 255 -- 12.2.4 Wireless Power Transfer and Energy Harvesting 256 -- Index 257.
520 ## - SUMMARY, ETC.
Summary, etc How 5G technology can support the demands of multiple vertical industries Recent advances in technology have created new vertical industries that are highly dependent on the availability and reliability of data between multiple locations. The 5G system, unlike previous generations, will be entirely data driven; addressing latency, resilience, connection density, coverage area, and other vertical industry criteria. Enabling 5G Communication Systems to Support Vertical Industries demonstrates how 5G communication systems can meet the needs unique to vertical industries for efficient, cost-effective delivery of service. Covering both theory and practice, this book explores solutions to problems in specific industrial sectors including smart transportation, smart agriculture, smart grid, environmental monitoring, and disaster management. The 5G communication system will have to provide customized solutions to accommodate each vertical industry's specific requirements. Whether an industry practitioner designing the next generation of wireless communications or a researcher needing to identify open issues and classify their research, this timely book: . Covers the much-discussed topics of supporting multiple vertical industries and new ICT challenges. Addresses emerging issues and real-world problems surrounding 5G technology in wireless communication and networking. Explores a comprehensive array of essential topics such as connected health, smart transport, smart manufacturing, and more. Presents important topics in a clear, concise style suitable for new learners and professionals alike. Includes contributions from experts and industry leaders, system diagrams, charts, tables, and examples Enabling 5G Communication Systems to Support Vertical Industries is a valuable resource for telecom engineers, industry professionals, researchers, professors, doctorate, and postgraduate students requiring up-to-date information on supporting vertical industries with 5G technology systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Mobile communication systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Wireless communication systems.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Cell phone systems
General subdivision Standards.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
Subject Mobile communication systems
General subdivision Standards.
700 1# - AUTHOR 2
Author 2 Imran, Muhammad Ali,
700 1# - AUTHOR 2
Author 2 Sambo, Yusuf Abdulrahman,
700 1# - AUTHOR 2
Author 2 Abbasi, Qammer H.,
856 42 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://ieeexplore.ieee.org/xpl/bkabstractplus.jsp?bkn=8786834
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
264 #1 -
-- Hoboken, New Jersey, USA :
-- Wiley-IEEE Press,
-- 2019.
264 #2 -
-- [Piscataqay, New Jersey] :
-- IEEE Xplore,
-- [2019]
336 ## -
-- text
-- rdacontent
337 ## -
-- electronic
-- isbdmedia
338 ## -
-- online resource
-- rdacarrier
588 ## -
-- Online resource; title from PDF title page (EBSCO, viewed June 26, 2019).

No items available.