Nanogap electrodes / (Record no. 68350)

000 -LEADER
fixed length control field 04604cam a2200529Ia 4500
001 - CONTROL NUMBER
control field on1260348473
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20220711203150.0
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 210717s2021 gw ob 001 0 eng d
019 ## -
-- 1262312848
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783527659562
-- (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 3527659560
-- (electronic bk. : oBook)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783527659593
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 3527659595
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 9783527659586
-- (e-book)
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
ISBN 3527659587
029 1# - (OCLC)
OCLC library identifier AU@
System control number 000069691757
082 04 - CLASSIFICATION NUMBER
Call Number 621.3815
245 00 - TITLE STATEMENT
Title Nanogap electrodes /
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication Weinheim, Germany :
Publisher Wiley-VCH,
Year of publication 2021.
300 ## - PHYSICAL DESCRIPTION
Number of Pages 1 online resource (435 p.)
500 ## - GENERAL NOTE
Remark 1 Description based upon print version of record.
505 0# - FORMATTED CONTENTS NOTE
Remark 2 Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Nanogap Electrodes and Molecular Electronic Devices -- 1.1 Introduction -- 1.2 Overview of Molecular Electronics -- 1.2.1 Why Molecular Electronics -- 1.2.1.1 History of Computing -- 1.2.1.2 Moore's Law -- 1.2.1.3 Molecular Electronics: A Beyond-CMOS Option -- 1.2.2 Molecular Materials for Organic Electronics -- 1.2.2.1 OLEDs -- 1.2.2.2 OFETs -- 1.2.2.3 OPVs -- 1.2.3 Molecules for Molecular-Scale Electronics -- 1.3 Introduction to Nanogap Electrodes -- 1.4 Summary and Outlook -- References
505 8# - FORMATTED CONTENTS NOTE
Remark 2 Chapter 2 Electron Transport in Single Molecular Devices -- 2.1 Introduction -- 2.2 General Methods -- 2.2.1 Transport Mechanisms -- 2.2.2 Nonequilibrium Green's Function Method -- 2.2.3 Master Equation Method -- 2.3 Single Electron Transport Through Single Molecular Junction -- 2.3.1 Coherent Transport -- 2.3.2 Hopping Transport -- 2.4 Effect of Many-Body Interactions -- 2.4.1 Electron-Vibration Interaction -- 2.4.1.1 Weak Coupling Regime -- 2.4.1.2 Strong-Coupling Regime -- 2.4.2 Electron-Electron Interaction -- 2.4.2.1 Coulomb Blockade -- 2.4.2.2 Kondo Effect -- 2.5 Thermoelectric Transport
505 8# - FORMATTED CONTENTS NOTE
Remark 2 2.6 First-Principles Simulations of Transport in Molecular Devices -- 2.7 Conclusions -- References -- Chapter 3 Fabricating Methods and Materials for Nanogap Electrodes -- 3.1 Introduction -- 3.2 Mechanical Controllable Break Junctions -- 3.3 Electrochemical and Chemical Deposition Method -- 3.3.1 Electroplating and Feedback System -- 3.3.2 Chemical Deposition -- 3.4 Oblique Angle Shadow Evaporation -- 3.5 Electromigration and Electrical Breakdown Method -- 3.5.1 Device Fabrication -- 3.5.2 Gap Size Control -- 3.5.3 Electromigration Applications -- 3.6 Molecular Scale Template
505 8# - FORMATTED CONTENTS NOTE
Remark 2 3.6.1 Molecular Rulers -- 3.6.2 Inorganic Films as Templates -- 3.6.3 On-Wire Lithography -- 3.6.4 Nanowire Mask -- 3.7 Focused Ion Beam -- 3.8 Scanning Probe Lithography and Conducting Probe-Atomic Force Microscopy -- 3.8.1 Destructive Way -- 3.8.2 Constructive Way -- 3.8.3 Conducting Probe-Atomic Force Microscopy -- 3.9 Nanogap Electrodes Prepared with Nonmetallic Materials -- 3.9.1 Introduction -- 3.9.2 Nanogap Electrodes Made from Carbon Materials -- 3.9.2.1 Advantages of Carbon Materials -- 3.9.2.2 Carbon Nanotubes for Nanogap Electrodes -- 3.9.2.3 Graphene
505 8# - FORMATTED CONTENTS NOTE
Remark 2 3.9.2.4 Silicon Nanogap Electrodes -- 3.9.2.5 Other Materials -- 3.10 Summary and Outlook -- References -- Chapter 4 Characterization Methods and Analytical Techniques for Nanogap Junction -- 4.1 Current-Voltage Analysis -- 4.1.1 Coherent Tunneling Transport -- 4.1.2 Transition Voltage Spectroscopy -- 4.1.3 Incoherent Transport -- 4.2 Inelastic Tunneling Spectroscopy (IETS) -- 4.2.1 Principle and Measurement of IETS -- 4.2.2 Selection Rule and Charge Transport Pathway -- 4.2.3 Line Shape of the IETS -- 4.2.4 Application of the IETS
500 ## - GENERAL NOTE
Remark 1 4.2.5 Mapping the Charge Transport Pathway in Protein Junction by IETS.
700 1# - AUTHOR 2
Author 2 Li, Tao.
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier https://doi.org/10.1002/9783527659562
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type eBooks
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electrodes.
650 #0 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Nanoelectronics.
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Electrodes.
-- (OCoLC)fst00906399
650 #7 - SUBJECT ADDED ENTRY--SUBJECT 1
-- Nanoelectronics.
-- (OCoLC)fst01741867
994 ## -
-- C0
-- DG1

No items available.